Antioxidant Deactivation on Graphenic Nanocarbon Surfaces
نویسندگان
چکیده
منابع مشابه
Nanocarbon surfaces for biomedicine
The distinctive physicochemical, mechanical and electrical properties of carbon nanostructures are currently gaining the interest of researchers working in bioengineering and biomedical fields. Carbon nanotubes, carbon dendrimers, graphenic platelets and nanodiamonds are deeply studied aiming at their application in several areas of biology and medicine. Here we provide a summary of the carbo...
متن کاملCoalescence of Atomically Precise Clusters on Graphenic Surfaces
The interaction of ultrasmall metal clusters with surfaces of graphene is important for developing promising future applications of graphenic materials. In the experiment, chemically synthesized reduced graphene oxide (RGO) in water was mixed with Au25SR18 (where SR, SCH2CH2Ph, is a ligand protecting the cluster core) in tetrahydrofuran, and a completely new cluster, larger in mass, was formed ...
متن کاملStudying reaction intermediates formed at graphenic surfaces.
We report in-situ production and detection of intermediates at graphenic surfaces, especially during alcohol oxidation. Alcohol oxidation to acid occurs on graphene oxide-coated paper surface, driven by an electrical potential, in a paper spray mass spectrometry experiment. As paper spray ionization is a fast process and the time scale matches with the reaction time scale, we were able to detec...
متن کاملModified nanocarbon surfaces for high performance supercapacitor and electrocatalysis applications.
An efficient and easy method is described which allows modification of supported nanocarbon films with carbon nanotubes (CNTs) from an aqueous colloidal suspension. Subsequently CNTs can be decorated with Pt-nanoparticles directly from an aqueous solution of Pt ions without the need for reducing agents. High performance supercapacitors and electrocatalysts are obtained.
متن کاملNanocarbon condensation in detonation
We analyze the definition of the Gibbs free energy of a nanoparticle in a reactive fluid environment, and propose an approach for predicting the size of carbon nanoparticles produced by the detonation of carbon-rich explosives that regards their condensation as a nucleation process and takes into account absolute entropy effects of the cluster population. The results are consistent with experim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Small
سال: 2011
ISSN: 1613-6810
DOI: 10.1002/smll.201100651